A lethal neonatal phenotype of mitochondrial short-chain enoyl-CoA hydratase-1 deficiency.
نویسندگان
چکیده
Short-chain enoyl-CoA hydratase (SCEH) is a mitochondrial enzyme involved in the oxidation of fatty acids and the catabolic pathway of valine and, to a lesser extent, isoleucine. Deficiency of this enzyme was recently shown to cause an early childhood Leigh syndrome phenotype. The few reported patients were compound heterozygotes for two missense or missense with truncating variants in ECHS1 that encodes SCEH. We describe two siblings with severe refractory lactic acidosis and death within the first 2 days of life. Following negative clinical whole-exome and whole-genome sequencing, we resorted to autozygome/exome analysis on research basis and identified a homozygous splice site mutation (c.88+5G>A) in the two cases. Analysis of cDNA confirmed complete replacement of the normal transcript with an aberrant transcript (r.88_89ins 88+1_88+11) predicting premature truncation of the protein [p.(Ala31Glufs*23)]. Furthermore, quantitative reverse transcriptase polymerase chain reaction (RTPCR) showed marked reduction in ECHS1, most likely nonsense-mediated decay (NMD)-mediated. This is the first report of homozygosity for a truncating mutation in ECHS1, which may explain the severe phenotype. Our report highlights the need to consider SCEH deficiency in patients with lethal neonatal lactic acidosis, and the potentially limited sensitivity of untargeted genomic sequencing towards non-canonical splicing mutations, which may explain at least some of the 'negative' cases on clinical exome/genome sequencing.
منابع مشابه
Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations.
The mitochondrial trifunctional protein (TFP) is a multienzyme complex of the fatty acid beta-oxidation cycle. It is composed of four alpha-subunits (HADHA) harboring long-chain enoyl-CoA hydratase and long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD) and four beta-subunits (HADHB) harboring long-chain 3-ketoacyl-CoA thiolase (LKAT). Mutations in either subunit can result in TFP deficiency w...
متن کاملIsolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene.
BACKGROUND The human mitochondrial trifunctional protein (MTP) complex is composed of 4 hydroacyl-CoA dehydrogenase-alpha (HADHA) and 4 hydroacyl-CoA dehydrogenase-beta (HADHB) subunits, which catalyze the last 3 steps in the fatty acid beta-oxidation spiral of long-chain fatty acids. The HADHB gene encodes long-chain ketoacyl-CoA thiolase (LCTH) activity, whereas the HADHA gene contains the in...
متن کاملClinical and biochemical characterization of four patients with mutations in ECHS1
BACKGROUND Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a de...
متن کامل[Mitochondrial trifunctional protein deficiency].
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with longchain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experimen...
متن کاملIdentification of enzymes involved in oxidation of phenylbutyrate
In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical genetics
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2017